ACADEMIC LESSION PLAN FOR WINTER - 2024

Dept. of Electronics & Telecommunication, Govt. Polytechnic, Balasore Name of the Faculty: Yogasakti Yogamaya (Lecturer, E&TC) Subject: VLSI & Embedded System

Theory :

4 P/W

Total Period s: Examination:

60 P/ Sem 3 Hours

Sem

: 5 E&TC

Internal Assessment:

20 Marks

End Semester Exam

80marks

TOTAL MARKS

: 100 Marks

Start of Class

: 1.07.2024

WEEK	PERIOD	TOPIC
1st	1 st	Unit-1: Introduction to VLSI & MOS Transistor(12)
		1.1 Historical perspective- Introduction
	2 nd	1.2 Classification of CMOS digital circuit types
	3 rd	1.3 Introduction to MOS Transistor& Basic operation of MOSFET.
	4 th	1.4 Structure and operation of MOSFET (n-MOS enhancement type) & COMS
2 nd	1 st	1.5 MOSFET V-I characteristics,
	2 nd	1.6 Working of MOSFET capacitances.
	3 rd	1.7 Modelling of MOS Transistors including Basic concept the SPICE level-1 models, the level-2 and level-3 model.
	4 th	1.8 Flow Circuit design procedures
3 rd	1 st	1.9 VLSI Design Flow & Y chart
	2 nd	1.10 Design Hierarchy
	3 rd	1.11 VLSI design styles-FPGA, Gate Array Design,
	4 th	Standard cells based, Full custom
4 th	1 st	Unit-2: Fabrication of MOSFET (10)
		2.1 Simplified process sequence for fabrication
	2 nd	2.2 Basic steps in Fabrication processes Flow
	3 rd	2.3 Fabrication process of nMOS Transistor
	4 th	2.4 CMOS n-well Fabrication Process Flow
5 th	1 st	2.5 MOS Fabrication process by n-well on p-substrate
	2 nd	2.6 CMOS Fabrication process by P-well on n-substrate
	3 rd	2.7 Layout Design rules
	4 th	2.8 Stick Diagrams of CMOS inverter
6 th	1 st	Unit-3:MOS Inverter(09)
		3.1 Basic nMOS inverters,
	2 nd	3.2 Working of Resistive-load Inverter
	3 rd	3.3 Inverter with n-Type MOSFET Load – Enhancement Load,
	4 th	Depletion n-MOS inverter
7 th	1 st	3.4 CMOS inverter – circuit operation and :
	2 nd	characteristics and interconnect effects Delay time
		definitions
	3 rd	3.5 CMOS Inventor design with delay constraints Two
	Kenny of Mir to the Wife	sample mask lay out for p-type substrate.

	4 th	Unit-4: Static Combinational, Sequential, Dynamics logic circuits & Memories(15)
		4.1 Define Static Combinational logic working of Static
8 th	1 st	ewios logic circuits (Two-Input NAND Gate)
	2 nd	4.2 CMOS logic circuits (NAND2 Gate)
	3 rd	4.3 CMOS Transmission Gates(Pass gate)
	4 th	4.4 Complex Logic Circuits - Basics
	4	4.5 Classification of Logic circuits based on their temporal behaviour
9 th	1 st	Continue
	2 nd	4.6 SR Flip latch Circuit,
	3 rd	Continue
	4 th	
10 th	1 st	4.7 Clocked SR latch only. Continue
	2 nd	
	3 rd	4.8 CMOS D latch.
	4 th	4.9 Basic principles of Dynamic Pass Transistor Circuits
11 th	1 st	4.10 Dynamic RAM,
	2 nd	SRAM,
_	3 rd	4.11 Flash memory
	3	Unit-5: System Design method & synthesis (04)
	di in ath	5.1 Design Language (SPL & HDL)& HDL & EDA tools
12 th	4 th	VHDL and packages Xlinx
12	1 st	5.2 Design strategies
	2 nd	concept of FPGA with standard cell based design
	3 rd	VHDL for design synthesis using CPLD or FPGA
	4 th	5.3 VHDL for design synthesis using CPLD or FPGA
13 th	1 st	5.4 Raspberry Pi - Basic idea
	2 nd	5.4 Raspberry Pi - Basic idea
A	3 rd	Unit-6: Introduction to Embedded Systems(10)
		6.1 Embedded Systems Over view ,list of embedded
		systems, characteristics ,
	4 th	example – A Digital Camera
14 th	1 st	6.2 Embedded Systems TechnologiesTechnology –
		DefinitionTechnology for Embedded Systems
	2 nd	Processor Technology, IC Technology
	3 rd	6.3 Design Technology-Processor Technology, General
		Purpose Processors – Software,
	4 th	Basic Architecture of Single Purpose Processors – Hardwar
15 th	1 st	6.4 Application – Specific
		Processors, Microcontrollers, Digital Signal Processors (DSP)
	2 nd	6.5 IC Technology- Full Custom / VLSI,Semi-Custom ASIC
	3 rd	(Gate Array & Standard Cell), PLD (Programmable Logic
		Device)
	4 th	6.6 Basic idea of Arduino micro controller

