

DEPARTMENT OF ELECTRICAL ENGINEERING Govt. Polytechnic, Balasore

LESSON PLAN FOR ACADEMIC SESSION - 2024-2025

Course Code: Th-1	Semester : 3 RD
Total Periods : 75(60L+15T)	Examination : 3 Hours
Theory Periods : 4 P/Week	Internal Assessment : 20 Marks
Tutorial :	End Semester Examination : 80 Marks
Maximum Marks : 100	
Semester From Date : 01/07/2024	To Date : 16/12/2024

Name of Teaching Faculty : Er. BISWAJIT MALLIK

Week	Class day	Theory
	1 st	Real Numbers, Imaginary Numbers Complex Numbers and it's properties
	2 nd	Conjugate of complex number and Modulus of complex number
	3 rd	Amplitude of complex number and Geometrical representation
1 st	4 th	Determination of three cube roots of unity and their properties with examles
	1 st	De Moivre's Theorem and examples based on De Moivre's Theorem
2 nd	2 nd	Problem Solve
	3 rd	Introduction about matrix, Define rank of matrix Elementary row operations to determine rank of matrix
	4 th	Rouche's Theorem for consistency of a system of linear equations in n unknowns
3 rd	1 st	Problem Solve based on previous class
	2 nd	Problem Solcve
	3 rd	Define Homo. And Non-Homo. Linear Diff. Equations, Examples
	4 th	General solution of Linear diff. equations in terms of C.F. and P.I.

	Derive rules for finding C.F. and P.I. in terms of operator D
	Derive rules for finding C.F. and P.I. in terms of operator D
A th	Problem Solve
4	Define Partial Differential Equations (P.D.E), Examples
5 th	Form P.D.E by eliminating arbitrary constants and functions with examples
	Solve P.D.E of the form Pp+Qq=R
	Problem Solve based on previous class
	Problem Solve
	Introduction, Laplace transform and Doubble Integral
	Define Gamma function with examples
	Laplace transform of function f(t)
6 th	Define Inverse Laplace transform with examples
	Define Laplace transform of standard functions and explain existence of conditions of L.T
	Explain Linear shifting property of L.T.
7 th	Formulate L.T. of derivatives, integrals
,	Formulate L.T. by multiplication by t^n and division by t
	Solve problem
	Derive formulae of the inverse L.T. with examples
	Explain the method of partial fractions
8 th	Solve problem
	Introduction of Periodic function
	Dirchilet's conditions for the Fourier expansion of a function and it's convergence
	Dirchilet's conditions for the Fourier expansion of a function and it's convergence continue
9 th	Express periodic function f(x) satisfying Dirchilet's conditions as a Fourier series

	Problem Solve
	State Euler Formulae
	Define even function and find Fourier series in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$
10 th	Define odd function and find Fourier series in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$
	Problem Solve
	Fourier series of continuous function in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$
	Fourier series of function having point of discontinuity in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$
11 th	Problem Solve
	Appraise limitation of analytical methods of solutions of Algebraic Equation
	Derivation of iterative formula for bisection method and examples
	Derivation of iterative formula for Newton-Raphson method and examples
12 th	Problem Solve
	Explain finite difference and form table of forward and backward difference
	Define shift operator and establish relation between E and difference operator (Δ)
	Derive Newton's forward interpolation formula for equal intervals with examples
13 th	Derive Newton's backward interpolation formula for equal intervals with examples
	Problem Solve
	State Lagrange's interpolation formulae for for unequal intervals.
	Newton's Cote's formula and examples
14th	Trapezoidal Rule and examples.
	Problem Solve
	Simpsons 1/3 rd rule and examples.

	Problem Discussion
15th	Problem Discussion