

DEPARTMENT OF ELECTRICAL ENGINEERING

Govt. Polytechnic, Balasore

LESSON PLAN FOR ACADEMIC SESSION - 2023-24 ENERGY CONVERSION-I

Course Code: Th.1

Semester: 4th

Total Periods: 75 Periods

Lecture Periods: 4 P/Week

Internal Assessment: 20 Marks

Tutorial: -1P/week

End Semester Examination: 80 Marks

Maximum Marks: 100

Semester From Date: 16/01/2024

To Date: 8/05/2024

Schicker 110m Date : 10/01/2024 10 Date : 0/03/2024

Name of Teaching Faculty: Sri Biswajit Mallik (Sr. Lect. Electrical)

WEEK	PERIOD	TOPIC
1st	1 st	Introduction to electrical machine
		D.C Generator
	2 nd	Explain principle of operation
		Explain Constructional feature
	3 rd	Armature winding, back pitch, Front pitch, Resultant
		pitch and commutator- pitch.
	4 th	Simple Lap and wave winding (problems on winding
		diagram)
	5 th	Explain Different types of D.C. machines i.e. Shunt,
		Series machine with problem solving methods.
2 nd	1 st	Explain Different types of D.C. machines i.e. Compound
		machine with problem solving methods.
	2 nd	Derive EMF equation of DC generators. (Solve
		problems)
	3 rd	Explain Armature reaction in D.C. machine.
	4 th	Explain commutation in D.C. machine.
	5 th	Explain Methods of improving commutation (Resistance and emf commutation)
3 rd	1 st	Explain role of inter poles and compensating winding.
		(solve problems)
	2 nd	Characteristics of D.C. Generators with problem
		solving methods
	3 rd	Characteristics of D.C. Generators with problem
		solving methods
	4 th	State application of different types of D.C. Generators.
	5 th	Concept of critical resistance causes of failure of

		development of emf.
4 th	1 st	Explain losses of D.C. machines & numerical problems.
	2 nd	Explain efficiency of D.C. machines, condition for
		maximum efficiency and numerical problems.
	3 rd	Explain parallel operation of D.C. Generators.
	4 th	Explain parallel operation of D.C. Generators.
	5 th	Introduction to D. C. MOTORS
5 th	1 st	Explain basic working principle of DC motor
	2 nd	State Significance of back emf in D.C. Motor.
	3 rd	Derive voltage equation of Motor
	4 th	Derive torque (Equation of Armature Torque and shaft
		Torque) (solve problems)
	5 th	Explain performance characteristics of shunt motors and
		their application. (Solve problems)
6 th	1 st	Explain performance characteristics of series motors and their application. (Solve problems)
	2 nd	Explain performance characteristics of compound motors
		and their application. (Solve problems)
	3 rd	Explain methods of starting shunt, series and compound
		motors, (solve problems)
	4 th	Solve problems on dc motors.
	5 th	Explain speed control of D.C shunt motors by
		Flux control method
7 th	1 st	Armature voltage (rheostatic) Control method.
	2 nd	Solve problems on speed control of D.C shunt motors.
	3 rd	Explain speed control of series motors by Flux control method.
	4 th	Explain speed control of series motors by series parallel method.
	5 th	Explain determination of efficiency of D.C. Machine by break test method.
8 th	1 st	Explain determination of efficiency of D.C. Machine
		by Swinburne's Test method.
	2 nd	Explain Losses & efficiency
	3 rd	Explain condition for maximum power.
	4 th	Solve numerical problems on losses, efficiency and
		maximum power.
	5 th	SINGLE PHASE TRANSFORMER
		Explain working principle of transformer.
9 th	1 st	Explains Transformer Construction – Arrangement of
<u> </u>	and	core & winding in different types of transformer
	2 nd	Brief ideas about transformer accessories such as
	3 rd	conservator, tank, breather explosion vent etc.
<u> </u>	4 th	Explain types of cooling methods State the precedures for Core and maintenance
	5 th	State the procedures for Care and maintenance Derive EMF equation
10 th		Ideal transformer voltage transformation ratio
	2 nd	Explain Transformer on no load and on load phasor
	3 rd	diagrams.
	3	Explain phasor diagram of transformer with winding Resistance and Magnetic leakage. Phasor diagram on load using upf, leading pf and lagging pf.
	- TE	
	4 th	Explain Equivalent circuit and solve numerical problems.

	5 th	Calculate Approximate & exact voltage drop of a
		Transformer.
11 th	1 st	Calculate Regulation of various loads and power
		factor.
	2 nd	Explain Different types of losses in a Transformer.
	3 rd	Solve problems on losses of transformer.
	4 th	Explain Open circuit test.
	5 th	Explain Short circuit test.
12 th	1 st	Explain Efficiency, efficiency at different loads and
		power factors, condition for maximum efficiency (solve
		problems)
	2 nd	Explain All Day Efficiency
	3 rd	Solve problems on all day efficiency.
	4 th	Explain determination of load corresponding to
		Maximum efficiency.
	5 th	Explain parallel operation of single phase transformer
13 th	1 st	AUTO TRANSFORMER
		Explain constructional features
	2 nd	Explain Working principle of single phase Auto
		Transformer.
	3 rd	State Comparison of Auto transformer with an two
		winding transformer (saving of Copper)
	4 th	State Comparison of Auto transformer with an two
	=th	winding transformer (saving of Copper)
4 4+h	5 th	State Uses of Auto transformer.
14 th	1 st	Explain Tap changer with transformer (on load and off
	and	load condition)
	2 nd	INSTRUMENT TRANSFORMERS Explain Current Transformer
<u> </u>	3 rd	Explain Current Transformer Potential Transformer
		Define Ratio error, Phase angle error, Burden
	5 th	Define Ratio error, Phase angle error, Burden
15 th		Uses of C.T. and P.T.
-	2 nd	Tutorial
	3 rd	Tutorial
		Tutorial
	5 th	Tutorial
		1 575144