

DEPARTMENT OF ELECTRICAL ENGINEERING Govt. Polytechnic, Balasore

LESSON PLAN FOR ACADEMIC SESSION - 2024-25 CIRCUIT THEORY

Course Code: Th.2	Semester : 3RD	
Total Periods: 60 Periods	Examination : 3 Hours	
Theory Periods: 4 P/Week	Internal Assessment : 20 Marks	
Tutorial : -	End Semester Examination : 80 Marks	
Maximum Marks : 100		
Semester From Date : 01/07/2024	To Date: 16/12/2024	
Name of Teaching Faculty : Sri Biswajit Mallik (Sr. Lect. Electrical)		

WEEK	PERIOD	TOPIC
1ct	1 st	Define Network elements
	2nd	Explain scope of network englysis & synthesize
	Zind	Explain scope of network analysis & synthesize
	3''	Electrical potential, R-L-C parameters, Energy Sourc
	4 th	Define Active& Passive Elements, Explain current and voltage source, their transformation
2 nd	1 st	Current and voltage source, their transformation & mutual inductance
	2 nd	Explain Star – Delta transformation,
	3 rd	Mesh analysis with simple problem.
	4 th	Nodal analysis with simple problem
3 rd	1 st	State, Explain & Prove Millman Theorem and their applications
	2 nd	State, Explain & Prove Thevenin's Theorem and their applications.
	3 rd	State, Explain & Prove Norton's Theorem and their applications.
	4 th	State, Explain & Prove Maximum Power transfer Theorem and their applications.
4 th	1 st	State, Explain & Prove Reciprocity Theorem and their applications.
	2 nd	State, Explain & Prove Superposition Theorem and their applications.
	3 rd	Solve numerical problems of above.
	4 th	Define frequency, Cycle, Time period, Amplitude, Average value, RMS value & Form factor of AC Wave
5 th	1 st	Define phasor representation of alternating quantities

	2 nd	Explain the behaviour of A.C. through pure resistor
	3 rd	Explain the behaviour of A.C. through pure inductor and
		capacitor.
	4 th	Explain the behaviour of R-L, R-C, R-L-C series circuit
6 th	1 st	Draw the phasor diagram and
		voltage triangle
	2 nd	Solve numerical problems of above Circuit.
	3 rd	Explain the behaviour of R-L, R-C parallel circuit
	4 th	Explain the behaviour of R-L-C parallel circuit
7 th	1 st	Solve numerical problems
	2 nd	State & Explain Series resonance
	3 rd	Derive the following expression for series resonance
		a. Condition for Resonance
	4 th	b. Frequency of Resonance
8 th	1 st	c. Impedance, Current, Voltage, Q Factor and Power Factor
		of Resonance
	2 nd	d. Bandwidth interm of Q.
	3 rd	State Explain Parallel Resonance (RL,RC& RLC)
	4 th	Derive the expression for Parallel Resonance
9 th	1 st	What are the comparisons of Series & Parallel resonance
	2 nd	Define Network equations & initial conditions for resistor,
		inductor & capacitor
	3 rd	Analysis and derive the equation for circuit parameters of
		R-L circuit to DC
	4 th	Analysis and derive the equation for circuit parameters of
. eth	. ct	R-C circuit to DC
10 th	1 st	Analysis and derive the equation for circuit parameters of
-	and	R-L-C circuit to DC
-	2 rd	
-	3 rd	
a a th	4 th	Define Laplace Transformation
11"	1st	Analysis and derive the equations for circuit parameters of
-	and	Step response of R-L, R-C.
	Z	Step response of P. I. C.
-	o rd	Analysis and derive the equations for circuit parameters of
	5	Impulse response of R-L R-C
-	∕∆th	Analysis and derive the equations for circuit parameters of
	7	Impulse response of R-L-C.
12 th	1 st	Define Network functions for one port & two port
		networks.
	2 nd	Define & Explain Open circuit (Z-Parameter)parameter.
	3 rd	Define & Explain Short Circuit(Y-Parameter) Parameter.
	4 th	Calculate open & short Circuit Parameters for Simple
		Circuits
13 th	1 st	Define & Explain h- parameter (hybrid parameter)
	2 nd	Define T-Network & PI – Network
	3 rd	Tutorial.
[[4 th	Define filters, cut off frequency, pass band and stop band.
14 th	1 st	Classify filters; low pass, high pass, band pass, band stop
		filters & study their Characteristics.
ļ Ē	2 nd	Define Attenuation and Gain, Bel and Decibel & neper and
		their relations
	3 rd	Define Attenuators

	4 th	Define T- Type & PI – Type attenuators
15 th	1 st	Tutorial.
	2 nd	Tutorial.
	3 rd	Tutorial.
	4 th	Tutorial.