

DEPARTMENT OF ELECTRICAL ENGINEERING

Govt. Polytechnic, Balasore

LESSON PLAN FOR ACADEMIC SESSION - 2023-24 CONTROL SYSTEM ENGINEERING

Course Code: Th-3	Semester : 6 TH	
Total Periods : 75(60L+15T)	Examination : 3 Hours	
Theory Periods : 4 P/Week	Internal Assessment : 20 Marks	
Tutorial : 1 P/Week	End Semester Examination : 80 Marks	
Maximum Marks : 100		
Semester From Date : 16/01/2024	To Date : 8/05/2024	
Name of Teaching Faculty: Er. Radha Rani Panda		

WEEK	PERIOD	TOPIC
1st	1 st	FUNDAMENTAL OF CONTROL SYSTEM
		Classification of Control system
		Open loop system & Closed loop system and its comparison
	2 nd	Effects of Feed back
	3 rd	Standard test Signals(Step, Ramp, Parabolic, Impulse
		Functions)
	4 th	Servomechanism
	5 th	Tutorial (Doubt clearing and revision class)
2 nd	1 st	MATHEMATICAL MODEL OF A SYSTEM
		Transfer Function & Impulse response,
		Properties, Advantages & Disadvantages of Transfer Function
	2 nd	Poles & Zeroes of transfer Function
	3 rd	Simple problems of transfer function of network.
	4 th	Mathematical modeling of Electrical Systems(R, L, C,
		Analogous systems)
	5 th	Tutorial (Doubt clearing and revision class)
3 rd	1 st	CONTROL SYSTEM COMPONENTS
		Components of Control System
		Gyroscope,
	2 nd	Synchros, Tachometer
	3 rd	DC servomotors
	4 th	Ac Servomotors
	5 th	Tutorial (Doubt clearing and revision class)
4 th	1 st	BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW

11 th	1 st	FREQUENCY RESPONSE ANALYSIS.
	5 th	Tutorial (Doubt clearing and revision class)
	4 th	Problems related to Root Locus
	3 rd	Problems related to Root Locus
10	2 nd	Effect of adding poles and zeros to G(s) and H(s).
10 th		Problems related to Root Locus
	5 th	Tutorial (Doubt clearing and revision class)
	4 th	Problems related to Root Locus
	3 rd	Rules for construction of the root locus.
	2 nd	Rules for construction of the root locus.
9 th	1 st	Construction of root loci
e th	5 th	Tutorial (Doubt clearing, Numericals and revision class)
	4 th	Construction of root loci.
	a+h	Root locus concept
		TECHNIQUE.
	3 rd	ANALYSIS OF STABILITY BY ROOT LOCUS
-	2 nd	Response with PD and PID controller
ð		Response with P, PI controller
8 th	5"	
	5 th	Tutorial (Doubt clearing , Numericals and revision class)
	4	Effect of adding poles and zero to transfer function.
	5	Steady state errors in Type-2 system]
-	2	Types of control system. [Steady state errors in Type-0, Type-1]
	2 nd	Steady state error and error constants
/	Ŧ	time and steady state error
7 th	5	Derivation of expression for peak time, peak overshoot, settlin
	5 th	Tutorial (Doubt clearing and revision class)
		Derivation of expression for rise time
		Time response specification.
	·	input.
	4 th	Time response of second order system to the unit step
		Unit impulse response
	5	Unit step response
	3 rd	Time Response of first order system with:
		Impulse Signal
	2	Parabolic Signal
-	2 nd	Ramp Signal
		Standard Test Signal.
		Standard Test signal.
0	Ŧ	Time response of control system.
6 th	51 st	TIME RESPONSE ANALYSIS.
	4	Tutorial (Doubt clearing and revision class)
	4 th	Simple problems in Signal flow graph for network
	3 rd	Mason's Gain formula
	2 nd	Construction of Signal Flow graph from Block diagram
5 th		Basic Definition in Signal Flow Graph & properties
⊏ th	5"	Tutorial (Doubt clearing and revision class)
-	5 th	
	4 th	Simple Problem for equivalent transfer function
	3 rd	Procedure for of Reduction of Block Diagram
	2 nd	Rules for Block diagram reduction
		Canonical Form of Closed loop Systems
		Definition: Basic Elements of Block Diagram

		Correlation between time response and frequency response
-	2 nd	Polar plots.
	3 rd	Problems related to Polar plots.
	4 th	Bode plots.
-	5 th	Tutorial (Doubt clearing and revision class)
12 th	1 st	Problems related to Bode plots
	2 nd	All pass and minimum phase system.
	3 rd	Computation of Gain margin and phase margin.
	4 th	Problems related to computation of Gain margin and phase
		margin
	5 th	Tutorial (Doubt clearing and revision class)
13 th	1 st	Log magnitude versus phase plot.
	2 nd	Closed loop frequency response.
	3 rd	NYQUIST PLOT
		Principle of argument
	4 th	Nyquist stability criterion.
	5 th	Tutorial (Doubt clearing and revision class)
14 th	1 st	Problems related to Niquist stability
	2 nd	Niquist stability criterion applied to inverse polar plot.
	3 rd	Problems related to inverse polar plot.
	4 th	Effect of addition of poles and zeros to G(S) H(S) on the
		shape of Niquist plot
	5 th	Tutorial (Doubt clearing and revision class)
15 th	1 st	Assessment of relative stability.
Γ	2 nd	Constant M circle
[3 rd	Constant N circle
	4 th	Nicholas chart.
Γ	5 th	Tutorial (Doubt clearing and revision class)