

DEPARTMENT OF ELECTRICAL ENGINEERING

Govt. Polytechnic, Balasore

LESSON PLAN FOR ACADEMIC SESSION - 2024-2025 CIRCUIT AND NETWORK THEORY

Semester: 3RD **Course Code: Th-2 Total Periods:** 75(60L+15T) **Examination: 3 Hours Theory Periods: 4 P/Week Internal Assessment: 20 Marks Tutorial: 1 P/Week End Semester Examination: 80 Marks** Maximum Marks: 100 Semester From Date: 01/07/2024 To Date: 16/12/2024

Name of Teaching Faculty: Er. CHANDRA PRAKASH LENKA

WEEK	PERIOD	TOPIC
1st	1 st	MAGNETIC CIRCUITS
		Introduction to Magnetic Circuits
	2 nd	Magnetizing force, Intensity, MMF, flux and their relations
	3 rd	Permeability, reluctance and permeance
	4 th	Analogy between electric and Magnetic Circuits
	5 th	Tutorial (Doubt clearing and revision class)
2 nd	1 st	B-H Curve.
	2 nd	Series & parallel magnetic circuit
	3 rd	Hysteresis loop & Problems related to above topics
	4 th	COUPLED CIRCUITS:
		Self Inductance and Mutual Inductance
	5 th	Tutorial (Doubt clearing and revision class)
3 rd	1 st	Conductively coupled circuit and mutual impedance
	2 nd	Dot convention & Coefficient of coupling
	3 rd	Series and parallel connection of coupled inductors
	4 th	Numerical problems
	5 th	Tutorial (Doubt clearing and revision class)
4 th	1 st	CIRCUIT ELEMENTS AND ANALYSIS:
		Active, Passive, Unilateral & bilateral, Linear & Non linear
		elements & Mesh Analysis,
	2 nd	Mesh Equations by inspection
		Super mesh Analysis

	3 rd	Nodal Analysis, Nodal Equations by inspection
	4 th	Super node Analysis & Related Problems
_	 5 th	<u> </u>
5 th	1 st	Tutorial (Doubt clearing and revision class)
5.		Source Transformation Technique
	2 nd	Numerical problems (With Independent Sources Only)
	3 rd	NETWORK THEOREMS:
	4+h	Star to delta and delta to star transformation
	4 th	Super position Theorem
6 th	5 th	Tutorial (Doubt clearing and revision class)
ρ	1 st 2 nd	Thevenin's Theorem
_	3 rd	Numerical problems (With Independent Sources Only) Norton's Theorem.
	4 th	
	5 th	Maximum power Transfer Theorem Tutorial (Doubt clearing and revision class)
7 th		Numerical problems (With Independent Sources Only)
,	2 nd	
	3 rd	Numerical problems (With Independent Sources Only) AC CIRCUIT AND RESONANCE:
	3	A.C. through R-L, R-C & R-L-C Circuit
	4 th	Solution of problems of A.C. through R-L, R-C & R-L-C series
	·	Circuit by complex algebra method
	5 th	Tutorial (Doubt clearing, Numericals and revision class)
8 th	1 st	Solution of problems of A.C. through R-L, R-C & R-L-C
		parallel & Composite Circuits.
	2 nd	Power factor & power triangle.
	- rd	Deduce expression for active, reactive, apparent power
_	3 rd 4 th	Derive the resonant frequency of series resonance circuit
_	5 th	Derive the resonant frequency of parallel resonance circuit
9 th		Tutorial (Doubt clearing, Numericals and revision class) Define Bandwidth, Selectivity & Q-factor in series circuit
		Numerical problems
		*
	3 rd	POLYPHASE CIRCUIT Concept of poly-phase system and phase sequence
	4 th	Relation between phase and line quantities in star & delta
	7	connection
	5 th	Tutorial (Doubt clearing and revision class)
10 th	1 st	Power equation in 3-phase balanced circuit
	2 nd	Numerical problems
-	3 rd 4 th	Measurement of 3-phase power by two wattmeter method.
	5 th	Numerical problems Transit (Doubt elegating and navigion elegat)
11 th	1 st	Tutorial (Doubt clearing and revision class) TRANSIENTS:
11	1	Steady state & transient state response
	2 nd	Response to R-L circuit under DC condition
	ord	
	3 rd 4 th	Response to R-C circuit under DC condition
		Response to RLC circuit under DC condition
	5 th	Tutorial (Doubt clearing and revision class)
12 th	1 st	Numerical problems
	2 nd	Numerical problems
	3 rd	TWO-PORT NETWORK:
		Open circuit impedance (z) parameters

	4 th	Short circuit admittance (y) parameters
	5 th	Tutorial (Doubt clearing and revision class)
13 th	1 st	Transmission (ABCD) parameters
	2 nd	Hybrid (h) parameters
	3 rd	Inter relationships of different parameters
	4 th	Inter relationships of different parameters
	5 th	Tutorial (Doubt clearing and revision class)
14 th	1 st	T and π representation.
	2 nd	Numerical problems
	3 rd	FILTERS: Define filter
		Classification of pass Band, stop Band and cut-off frequency
	4 th	Constant – K low pass filter
	5 th	Tutorial (Doubt clearing and revision class)
15 th	1 st	Constant – K high pass filter
	2 nd	Constant – K Band pass filter
	3 rd	Constant – K Band elimination filter.
	4 th	Numerical problems
	5 th	Tutorial (Doubt clearing and revision class)