

GOVERNMENT POLYTECHNIC, BALASORE

Government of Odisha ସରକାରୀ ବହୁବୃତି ଅନୁଷ୍ଠାନ, ବାଲେଶ୍ୱର

Lesson plan summer - 2023

Discipline : Mechanical engineering.	Semester:4th	Name of the Teaching Faculty :Manoj kumar sahoo	
Subject: THEORY OF MACHINES.	No of Days /Per week class allotted	Semester from date 14.02.2023 to No of week:15	
Week	Class day	Theory/Practical topics	
	1st	UNIT .1-Simple mechanism Link ,kinematic chain, mechanism	
1St 2nd	2nd	Definition of machine describe it?	
	3rd	Defination of Inversion & types	
	4th	four bar link mechanism and its inversion?	
	1st	Single slider crank mechanism &its inversion.	
	2nd	Double slider mechanisim its inversion.	
	3rd	What is DOF and numericals on its.	
	4th	Lower pair and higher pair and types of cam and follower.	
3rd	1st	UNIT 2- FRICTION Introduction on it and example .	
	2nd	Type of friction and friction law.	
	3rd	Friction between nut and screw for square thread.	
	4th	screw jack derive the torque required for lifting the load	
4th	1st	Bearing and its classification, Description of roller, needle roller& ball bearings	
	2nd	Torque transmission in flat pivot& conical pivot bearings.	
	3rd	Numerical on above	
	4th	Flat collar bearing of single and multiple types.	
5th	1st	Torque transmission for single and multiple clutches	
	2nd	Simple problems on above.	
	3rd	Working of Absorption type of dynamometer	
	4th	Working of simple frictional brakes.	

6th	1st	Unit 3-Power Transmission Concept of power transmission
	2nd	Type of drives, belt, gear and chain drive.
	3rd	Computation of velocity ratio, length of belts (ope and cross) with and without slip.
	4th	Ratio of belt tensions, centrifugal tension and initiatension.
7th	1st	Power transmitted by the belt.
	2nd	Determine belt thickness and width for given
	3rd	permissible stress for open belt.
	Siu	Determine belt thickness and width for given permissible stress for crossedbelt considering centrifugal tension
	4th	V-helts and V holts
	1st	V-belts and V-belts pulleys.
Q+h	2nd	Concept of crowning of pulleys
8th	3rd	Gear drives and its terminology Gear trains, working principle of simple, compound, reverted and epicyclic gear
	4th	tialis.
		Numerical on above
	. 1st	Unit 4-Governors and Flywheel
	2nd	i dilction of governor
0+L		Classification of governor
9th	3rd	Working of watt governor and derive the height of governor.
	4th	Working of porter governor and derive the height of
10th	1st	Working of proel governor and derive the height
	2nd	Working of Hartnell governor and derive the height
	3rd	Conceptual explanation of sonsitivity
	4th	CHISTIS.
11th	1st	Numerical on above.
	2nd	Function of flywheel.
	3rd	Comparison between flywheel &governor. Fluctuation of energy and coefficient of fluctuation of speed.
	4th	Numerical on flywheel.

	1st	Unit 5-Balancing of Machine Concept of static and dynamic balancing.
12th	2nd	Static balancing of rotating parts.
	3rd	How to balance with deribation & problem.
	4th	Principles of balancing of reciprocating parts
13th	1st	Simple problem on reciprocating parts.
	2nd	Causes and effect of unbalance.
	3rd	How to balance rotating parts of a mass.
	4th	Difference between static and dynamic balancing
14th	1st	UNIT 6 -Vibration of machine parts Introduction to Vibration and related terms.
	2nd	Defination Amplitude, time period andfrequency, cycle
	3rd	Classification of vibration.
	4th	Basic concept of natural, forced & damped vibration.
	1st	Torsional Vibration.
	2nd	Numerical on it
	3rd	Longitudinal Vibration
15th	4th	Causes & remedies of vibration.

2/2/23

MANOJ KUMAR SAHOO (PTGF)

Manaj lu, saha