

## GOVERNMENT POLYTECHNIC, BALASORE

Government of Odisha ସରକାରୀ ବହୁବୃତି ଅନୁଷ୍ଠାନ, ବାଲେଶ୍ୱର

## ACADEMIC LESSON PLAN FOR WINTER - 2022

Dept. of Mechanical Engineering, Govt. Polytechnic, Balasore

Name of the Faculty: Janmejay Rout

Subject: Design of Machine Elements

Theory : 4P/W

Internal Assessment :20 Marks

Total Periods : 60P/Sem

End Semestar Exam :80 Marks

Examination: 3 Hours

Total Marks :100 Marks

Sem : 5<sup>th</sup>, ME

Start of Class :15.09.2022

| WEEK            | CLASS           | MODULE  | THEORY/PRACTICAL TOPIC                                                     | DATE |
|-----------------|-----------------|---------|----------------------------------------------------------------------------|------|
| 151             | 1 <sup>ST</sup> | 1.1     | Introduction of Machine design.                                            |      |
|                 | 2 <sup>nd</sup> | 1.1     | Classification of Machine design.                                          |      |
|                 | 3 <sup>rd</sup> | 1.2     | Different Mechanical Engineering material with their use.                  |      |
|                 | 4 <sup>th</sup> | 1.2     | Mechanical and physical property of material.                              |      |
| 2 <sup>nd</sup> | 1st             | 1 3     | Define working stress, yield stress, ultimate stress and factor of safety. |      |
|                 |                 | 1.3     | Stress, strain curve for MS and CI.                                        |      |
|                 |                 | 1.4     | Modes of failure by elastic deflection.                                    |      |
| Trible          |                 | 1.4     | Modes of failure by general yielding and fracture.                         |      |
| 3rd             |                 | 1.5     | State the factors governing of machine element.                            |      |
|                 |                 | 1.6     | General considerations in machine design.                                  |      |
|                 |                 | 1.6     | General procedure in machine design.                                       |      |
|                 |                 | 1.6     | Class test of Chapter 1                                                    |      |
| 4th             |                 | 2.1     | What is joint and type of joint.                                           |      |
|                 |                 | 2.1     | Classification of joint.                                                   |      |
|                 |                 | 2.2     | State type of welding joint.                                               |      |
|                 |                 | 2.3     | State advantage of welded joint over other joints.                         |      |
| 5th             |                 | 2.4     | Design of welded joint and symbol.                                         |      |
|                 |                 | 2.4     | Derivation on eccentric load.                                              |      |
|                 |                 | 2.5     | State type of riveted joint and type of rivet.                             |      |
|                 |                 | 2.6     | Describe failure of riveted joints.                                        |      |
| 6th             |                 | 2.7     | Determine strength and efficiency of riveted joint.                        |      |
| 7th             |                 | 2.7     | Numerical on strength and efficiency of riveted joints.                    |      |
|                 |                 | 2.8     | Design riveted joints for pressure vessel.                                 |      |
|                 |                 | 2.9     | Numerical on welding joint and riveted joints.                             |      |
|                 |                 | 3.1     | State function of shafts.                                                  |      |
|                 |                 | 3.2,3.3 | State material for shaft and design of hollow and solid shaft.             |      |
|                 |                 | 3.3     | Design of solid and hollow shaft to transmit a give                        | n    |

|                  | 3 3  | power at given rom based on                                                               |
|------------------|------|-------------------------------------------------------------------------------------------|
| Sth              |      | (a)strength, (b)rigidity                                                                  |
|                  |      | State standard size of shaft as per is                                                    |
|                  | 3.5  | State function of key, type of key & material of key.                                     |
|                  | 3.6  | Describe failure of key and effect of key way.                                            |
|                  | 3./  | Design of rectangular sunk key by using empirical re relation for given diameter of shaft |
|                  | 3.8  | Design of rectangular sunk key of shear and crushing stress                               |
|                  | 3.9  | State specification of parallel key, gib head key,                                        |
|                  |      | taper key as per IS.                                                                      |
|                  | 3.10 | Numerical on key design.                                                                  |
| 9th              | 3.10 | Numerical on failure of key effect of key way.                                            |
| 10 <sup>th</sup> | 4.1  | Design of shaft coupling.                                                                 |
|                  | 4.2  | Requirement of good shaft coupling.                                                       |
|                  | 4.3  | Type of coupling.                                                                         |
|                  | 4.4  | Design of sleeve or muff-coupling.                                                        |
| 11 <sup>th</sup> | 4.4  | Numerical on sleeve and muff-coupling.                                                    |
|                  | 4.5  | Design of clamp or compression coupling.                                                  |
|                  | 4.5  | Numerical on clamper compression coupling.                                                |
|                  | 4.5  | Flange coupling.                                                                          |
| 12 <sup>th</sup> | 4.5  | Numerical on flange coupling.                                                             |
|                  | 4.5  | Design of flexible coupling.                                                              |
|                  | 4.5  | Numerical on flexible coupling.                                                           |
|                  | 4.6  | Numerical on coupling.                                                                    |
| 13 <sup>th</sup> | 5.1  | Material used for helical spring.                                                         |
|                  | 5.1  | Application of spring and type of spring.                                                 |
|                  | 5.2  | Standard size spring wire (SWG).                                                          |
|                  | 5.3  | Term used in compression spring.                                                          |
| 14 <sup>th</sup> | 5.3  | End connection for compression helical springs.                                           |
|                  | 5.4  | Stress on helical spring of circular wire.                                                |
|                  | 5.4  | Numerical on stress on helical spring of a circular                                       |
|                  |      | wire.                                                                                     |
|                  | 5.5  | Deflection of helical spring on circular wire.                                            |
| 15th             | 5.5  | Numerical on deflection of helical spring on circular                                     |
|                  |      | wire.                                                                                     |
|                  | 5.6  | Surge in spring.                                                                          |
|                  | 5.6  | Numerical on surge spring.                                                                |
|                  | 5.7  | Solve numerical on design of closed coil helical                                          |
|                  |      | compression spring.                                                                       |

Jarvejay Roch

