

ACADEMIC LESSION PLAN FOR SUMMER - 2023 Dept. of Electronics & Telecommunication, Govt. Polytechnic , Balasore

Name of the Faculty: Yogasakti Yogamaya (Lecturer, E&TC)

Theory Total Period s:

4 P/W

Digital Signal Processing (TH-3)

Examination : Sem

60 P/ Sem 3 Hours 5 E&TC

Internal Assessment :

20 Marks

End Semester Exam : TOTAL MARKS

80marks 100 Marks

Start of Class

WEEK		Start of Class : 14 February 2023
	PERIOD	TOPIC
1st	1 st	
	1"	Introduction of Signals, Systems & Signal
		processing
		Basics of Signals, Systems & Signal processing-basic
		element of a digital signal processing system -
		Compare the advantages of digital signal processing
		over analog signal processing.
	2 nd	Classify signals - Multi channel Multi-dimensional
		signals-Continuous time verses Discrete -times Signal. –
	3 rd	Continuous valued verses Discrete -valued signals.
	3.4	Concept of frequency in continuous time & discrete time
	4 th	signals-Continuous-time sinusoidal signals-
	4	Discrete-time sinusoidal signals-Harmonically related
2 nd	1 st	complex exponential. Analog to Digital & Digital to Analog conversion
	1	
	ond	, Sampling of Analog signal,
	2 nd	The sampling theorem, Quantization of continuous
	3 rd	amplitude signals Coding of greatized sample. Digital to analog conversion
		Coding of quantized sample. Digital to analog conversion
	4 th	Analysis of digital systems signals vs. discrete time signals
- rd	- St	systems PAGE TIME SIGNALS & SYSTEMS
3 rd	1 st	DISCRETE TIME SIGNALS & SYSTEMS. Concept of Discrete time signals .Elementary Discrete time
		signals. Classification Discrete time signal.
	and	Classification Discrete time signal
	2 nd	Simple manipulation of discrete time signal. Discrete time
	3 rd	
	-th	system. Input-output of system. Block diagram of discrete- time systems .Classify discrete
	4 th	
	ct	time system.
4 th	1 st	Classify discrete time system.
	2 nd	Inter connection of discrete -time system
	3 rd	Discrete time time-invariant system. Different techniques
		for the Analysis of linear system.
		1 in the impulse Pasner
	· 4 th	Resolution of a discrete time signal in to impulse. Respon
		of LTI system to arbitrary inputs using
		convolution sum
5 th	1 st	Convolution & interconnection of LTI system -
	_	proporties
	2 nd	5 Study systems with finite duration and infinite
	4	duration impulse response
	ord	Recursive & non-recursive discrete time system.
	3 rd	Determine the impulse response of linear time
	4 th	Determine the impulse response of infeat
		invariant recursive system.

6 th	4.0	
	1st	Correlation of Discrete Time signals
	2 nd	THE Z-TRANSFORM & ITS APPLICATION TO THE ANALY
		[SISIEM.]
	3 rd	Z-transform & its application to LTI system
	4 th	Direct Z-transform.
7 th	151	Inverse Z-transform.
	2 nd	Inverse Z-transform
		Various properties of Z-transform
	3'd	Various properties of Z-transform
	4 th	Rational Z-transform. Poles & zeros
8 th	1 st	Rational Z-transform. Poles & zeros Pole location time domain behavior for casual signals Pole location time domain behavior for casual signals
	2 nd	System function of a linear time invariant system. System function of a linear time invariant system.
	3 rd	System function of a linear time invariant inverse Z-transform by partial fraction expansion The form by partial fraction expansion
	4 th	Inverse Z-transform by partial fraction expansion Inverse Z-transform by partial fraction expansion From by contour Integration
9 th	1 st	Inverse Z-transform by partial flater Inverse Z-transform by contour Integration From by contour Integration
	2 nd	Inverse Z-transform by contour Integration
	3 rd	Inverse Z-transform by contour Integration DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS DESCRIPTIONS
	3	PROPERTIES: Fourier transform.
		PROPERTIES: Concept of discrete Fourier transform. Concept of discrete Fourier transform. Concept of discrete Fourier transform.
	4 th	
	7	
	1 st	Trequency domains time signals. Discrete Time Fourier transformation(DTFT) Discrete Time Fourier transformation(DTFT) Discrete Time Fourier transformation (DFT).
10 th	2 nd	Discrete Time Fourier transformation (DFT).
		Discrete Time Fourier transformation (DFT). Discrete Fourier transformation (DFT).
	3 rd	Discrete Fourier transformation (DFT). Discrete Fourier transformation (DFT).
	4 th	Discrete Fourier transformation Compute DFT as a linear transformation Compute DFT to other transforms
11 th	1 st	Delate DE 10 Other th
11	2 nd	Property of the DF I
t	3 rd	
-	4 th	Property of the DT To Multiplication of two DFT
	1 st	Multiplication
12 th	2 nd	circular convolution
	3 rd	circular convolution circular convolution Output Circular Convolution Output Circular Convolution
	4 th	circular convolution circular convolution FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS TO DET & FFT algorithm.
	4	FAST FOURIER TRANSFORM ACCOUNTS 5.1 Compute DFT & FFT algorithm.
	1 st	n' et compiliation o
13 th		Examples of DFT Divide and Conquer Approach to computation of DFT
	2 nd	Divide and Conquer Approach to 4
	3 rd	Padix-2 algorium
	4 th	Padix-2 algorithm
	1 st	Radix-2 algorithm Radix-2 algorithm
14 th	2 nd	
	3 rd	Radix-2 algorithm Radix-2 algorithms
	4 th	Application of FFT algorithms Introduction to digital filters.(FIR Filters)& General
		Introduction to digital interest
1. th	1 st	considerations
15 th		~1.
	2 nd	Introduction to DSP architecture Stifferent types of processor
	3 rd	Introduction to DSP architecture familiarization of different types of processor
	4 th	familiarization of different 51

