

GOVERNMENT POLYTECHNIC, BALASORE

Government of Odisha ସରକାରୀ ବହୁବୃତି ଅନୁଷ୍ଠାନ, ବାଲେଶ୍ୱର

Lesson plan summer - 2022

Discipline: Mechanical engineering.	Semester:4th	Name of the Teaching Faculty :Manoj kumar sahoo		
Subject: THEORY OF	No of Days /Per week	Semester from date 10.03.2022 to		
MACHINES.	class allotted	No of week:15		
Week	Class day	Theory/Practical topics		
	1st	UNIT .1-Simple mechanism Link ,kinematic chain, mechanism		
	2nd	Definition of machine describe it?		
1St	3rd	Defination of Inversion &types		
	4th	four bar link mechanism and its inversion?		
	1st	Single slider crank mechanism &its inversion.		
	2nd	Double slider mechanisim its inversion.		
	3rd	What is DOF and numericals on its.		
2nd	4th	Lower pair and higher pair and types of cam and follower.		
	1st	UNIT 2- FRICTION		
		Introduction on it and example.		
3rd	2nd	Type of friction and friction law		
	3rd	Friction between nut and screw for square thread.		
	4th	screw jack		
		derive the torque required for lifting the load		
	1st	Bearing and its classification, Description of roller, needle roller& ball bearings		
4th	2nd	Torque transmission in flat pivot& conical pivot bearings.		
	3rd	Numerical on above		
	4th	Flat collar bearing of single and multiple types.		
5th	1st	Torque transmission for single and multiple clutches		
5	2nd	Simple problems on above.		
	3rd	Working of Absorption type of dynamometer		
	4th	Working of simple frictional brakes.		

	1st	Unit 3-Power Transmission	
		Concept of power transmission	
6th	2nd	Type of drives, belt, gear and chain drive.	
	3rd	Computation of velocity ratio, length of belts (open and cross) with and without slip.	
	4th	Ratio of belt tensions, centrifugal tension and initial tension.	
	1st	Power transmitted by the belt.	
7th	2nd	Determine belt thickness and width for given permissible stress for open belt.	
	3rd	Determine belt thickness and width for given	
	Jiu	permissible stress for crossedbelt considering	
		centrifugal tension	
	4th	V-belts and V-belts pulleys.	
	1st	Concept of crowning of pulleys	
	2nd	Gear drives and its terminology	
8th	3rd	Gear trains, working	
	Jiu	principle of simple,	
		compound, reverted and	
		epicyclic gear trains.	
	4th	Numerical on above	
		Unit 4-Governors and Flywheel	
	1st	Function of governor	
	2nd	Classification of governor	
9th	3rd	Working of watt governor and derive the height of governor.	
	4th	Working of porter governor and derive the height of governor.	
10th	1st	Working of proel governor and derive the height of governor.	
	2nd	Working of Hartnell governor and derive the height of governor.	
	3rd	Conceptual explanation of sensitivity, stability and isochronisms.	
	4th	Numerical on above.	
	1st	Function of flywheel.	
11th	2nd	Comparison between flywheel &governor.	
	3rd	Fluctuation of energy and coefficient of fluctuation of speed.	
	4th	Numerical on flywheel.	
	•	· · · · · · · · · · · · · · · · · · ·	

	1st	Unit 5-Balancing of Machine	
		Concept of static and dynamic balancing.	
12th	2nd	Static balancing of rotating parts.	
	3rd	How to balance with deribation & problem.	
	4th	Principles of balancing of reciprocating parts	
	1st	Simple problem on reciprocating parts.	
	2nd	Causes and effect of unbalance.	
	3rd	How to balance rotating parts of a mass.	
13th	4th	Difference between static and dynamic balancing	
	1st	UNIT 6 -Vibration of machine parts	
		Introduction to Vibration and related terms.	
14th	2nd	Defination Amplitude, time period andfrequency, cycle Classification of vibration.	
	3rd		
	4th	Basic concept of natural, forced & damped vibration.	
	1st	Torsional Vibration.	
	2nd	Numerical on it	
	3rd	Longitudinal Vibration	
15th	4th	Causes & remedies of vibration.	