

GOVERNMENT POLYTECHNIC, BALASORE

Government of Odisha ସରକାରୀ ବହୁବୃତି ଅନୁଷ୍ଠାନ, ବାଲେଶ୍ୱର

Academic Lesson Plan for 3rd semester- 2021-2022

Discipline: Mechanical engineering.	Semester:3rd	Name of the Teaching Faculty: MANOJ KUMAR SAHOO
Subject: Strength of Material	No of Days /Per week class allotted	No of week:15
Week	Class day	Theory/Practical topics
	1st	1.0 Simple stress& strain
		1. 1 Types of load, stresses &
		strains,(Axial and tangential) Hooke's
16+	-	law,
1St	2nd	1.1 Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio
	3rd	derive the relation between three
		elastic constants
	4th	1.2 Principle of super position,
		stresses in composite section
	1st	1.3Temperature stress, determine
		the temperature stress in composite
		bar (single core)
2nd	2nd	1.3 Simple problems on above.
	3rd	1.4 Strain energy and resilience
	4th	1.4 Simple problems on above.
	1st	1.4 Stress due to gradually applied,
2.1	2 1	suddenly applied and impact load
3rd	2nd	1.5 Simple problems on above.
	3rd	UNIT 2 .Thin cylinder and spherical
		shell under internal pressure.
		2.1 Definition of hoop and
		longitudinal stress, strain
	4th	2.1 Simple problems on above
	1st	2.2 Derivation of hoop stress,
		longitudinal stress
4th	2nd	2.2 Simple problems on above.
	3rd	2.2 hoop strain, longitudinal strain
	444	and volumetric strain
	4th	2.2 Simple problems on above.
	1st	2.3 Computation of the change in

5th		length, diameter and volume	
	2nd	2.4 Simple problems on above.	
	3rd	UNIT-3.0 Two dimensional stress	
	Jiu	systems 3.1Determination of normal	
		stress	
	4th	3.1 Simple problems on above	
	1st	3.1 Determination of shear stress and	
		resultant stress on oblique plane	
6th	2nd	3.1 Simple problems on above.	
	3rd	3.2 Location of principal plane and	
		computation of principal stress	
	4th	3.2 Simple problems on above	
	1st	3.3 Location of principal plane and	
		computation of principal stress using	
7th		Mohr's circle.	
	2nd	3.3 Simple problems on above.	
	3rd	3.3 Maximum shear stress using	
		Mohr's circle.	
	4th	3.3 Simple problems on above.	
	1st	HNITA O Donding moments show	
8th		UNIT4.0 Bending moment& shear force	
		4.1 Types of beam and load.	
	2nd	4.2 Concepts of Shear force and	
		bending moment.	
	3rd	4.3 Shear Force and Bending moment	
		diagram.	
	4th	4.3Simple problems on above.	
		Shear Force and Bending moment	
	1st	diagram and its salient features	
		illustration in cantilever beam.With	
O.L.	24	simple problem.	
9th	2nd	simply supported beam.with simple	
	2rd	problem. over hanging beam under point	
	3rd	load,with problem.	
	4th	Shear Force and Bending moment	
	701	diagram UDL, with problem	
	1st	Maximum bending moment	
10th	131	calculation ,with problem.	
	2nd	How to calculate point of	
		contraflexure, with problem.	
	3rd	· ·	
		5.0 Theory of simple bending.	
		5.1 Introduction of bending theory.	

	4th	5.1 Assumptions in the theory of
		bending.
	1st	5.1 Bending stress calculation.
11th	2nd	5.1Position of neutral axis,&Moment
		of resistance.
	3rd	5.1 Moment of inertia calculation(MI)
	4th	5.2 Section modulus, calculation with
		problem.
	1st	5.3 Strength of the solid
		section&hollow section.
12th	2nd	5.4 Bending stresses in symmetrical
		section.
	3rd	5.4 Bending stresses in
		Unsymmetrical section.
	4th	5.5 Solve simple problems.
	1st	
		6.0 Combined direct & bending
		stresses.
13th		6.1 Define column & Types of column.
	2nd	6.2 Axial load, Eccentric load on
	2.1	column.
	3rd	6.3 Euler's column theory derivation.
	4th	6.3 Direct stresses, Bending stresses,
		Maximum& Minimum stresses.
	1st	6.3 Numerical problems on above.
	2nd	6.4 Buckling load computation using
14th		Euler's formula (no derivation) in
		Columns with various end conditions
	3rd	UNIT 7.0 Torsion.
		7.0 Introduction & Assumption of
		pure torsion.
	4th	7.1 The torsion equation for solid and
		hollow circular shaft.
15th	1st	7.1 Strength of a solid shaft.
	2nd	7.1Strength of a Hollow shaft.
	3rd	7.2 Power Transmitted by a shaft &
		polar moment of inertia .with
		numerical solve.
	4th	7.2 Comparison between solid and
		hollow shaft subjected to pure
		torsion