ACADEMIC LESSION PLAN FOR SESSION - 2021-22. DEPT. OF ELECTRICAL ENGG, GOVT. POLYTECHNIC, BALASORE. NAME OF THE FACULTY: ANITA SHIAL [LECT. (EE)] ## **ELECTRICAL MEASUREMENT & INSTRUMENTATION** Course Code: Th.3 Theory: 5 P/W Theory : 5 P/W Class Test : 20 Marks Total Period s: 75 P/ Sem End Semester Exam : 80marks Examination : 3 Hours TOTAL MARKS : 100 Marks Sem : 4TH EE START : 14th March 2022 | WEEK | PERIOD | TOPIC | |-----------------|-----------------|--| | 1st | 1 st | Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance | | | 2 nd | Classification of measuring instruments. | | | 3 rd | Explain Deflecting arrangements in indicating type of instruments. | | | 4 th | Explain controlling arrangements in indicating type of instruments. | | | 5 th | Explain damping arrangements in indicating type of instruments. | | 2 nd | 1 st | Calibration of instruments. | | | 2 nd | Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments. | | | 3 rd | Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments(continue) | | | 4 th | Describe Construction, principle of operation, errors, ranges merits and demerits of Permanent Magnet Moving coil type instruments. | | | 5 th | Describe Construction, principle of operation, errors, ranges merits and demerits of Permanent Magnet Moving coil type instruments(continue) | | 3 rd | 1 st | Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer type instruments | | | 2 nd | Describe Construction, principle of operation, errors, ranges merits and demerits of Dynamometer type instruments(continue) | | | 3 rd | Describe Construction, principle of operation, errors, ranges merits and demerits of Rectifier type instruments | | | 4 th | Describe Construction, principle of operation, errors, ranges merits and demerits of Induction type instruments | | | 5 th | Extend the range of instruments by use of shunts resistor | | 4 th | 1 st | Extend the range of instruments by use of Multipliers. | | | 2 nd | Solve Numerical | | | 3 rd | Solve Numerical(continue) | | | 4 th | Describe Construction, principle of working of Dynamometer type wattmeter . | | | 5 th | Errors in Dynamometer type wattmeter | |------------------|-----------------|--| | 5 th | 1 st | methods of their Error correction | | | 2 nd | Discuss L P F type Dynamometer wattmeter | | | 3 rd | Discuss U P F type Dynamometer wattmeter | | | 4 th | Discuss Induction type watt meters | | | 5 th | Single Phase Induction type Energy meters (introduction) | | 6 th | 1 st | Single Phase Induction type Energy meters – construction & | | | | working principle | | | 2 nd | Single Phase Induction type Energy meters – construction & | | | | working principle(continue) | | | 3 rd | their compensation and adjustments. | | | 4 th | Testing of Energy Meters | | | 5 th | Different types of Tachometers(introduction) | | 7 th | 1 st | working principles of Tachometers | | | 2 nd | Principle of operation and construction of Mechanical Type | | | | frequency meters | | | 3 rd | Principle of operation and construction of Mechanical Type | | | | frequency meters(continue) | | | 4 th | Principle of operation and construction of Electrical | | | | resonance Type frequency meters. | | | 5 th | Principle of operation and construction of Electrical | | | | resonance Type frequency meters(continue) | | 8 th | 1 st | Principle of operation and working of Dynamometer type | | _ | and | single phase power factor meters. | | | 2 nd | Principle of operation and working of Dynamometer type | | _ | Ord | three phase power factor meters | | _ | 3 rd | Classification of resistance | | _ | 4 th | Measurement of low resistance by potentiometer method | | | 5 th | Measurement of medium resistance by wheat Stone bridge | | 9 th | 1 st | method Massurament of high resistance by less of charge method | | 9 | 2 nd | Measurement of high resistance by loss of charge method | | | Ζ | Construction, principle of operations of Megger for measurement of insulation resistance | | _ | 3 rd | Construction, principle of operations of Earth tester for earth | | | J | resistance measurement | | | 4 th | Construction and principles of Multimeter. (Analog) | | | 5 th | Construction and principles of Multimeter. (Digital) | | 10 th | 1 st | Measurement of inductance by Maxewell's Bridge method | | | 2 nd | Measurement of capacitance by Schering Bridge method | | | 3 rd | Define Transducer, sensing element or detector element and | | | | transduction elements | | - | 4 th | Classify transducer. Give examples of various class of | | | • | transducer, Resistive transducer. | | <u> </u> | 5 th | Linear motion potentiometer | | 11 th | 1 st | angular motion potentiometer | | - | 2 nd | Thermistor and Resistance thermometers | | <u> </u> | 3 rd | | | | 4 th | Wire Resistance Strain Gauges, Inductive Transducer | | | 4 | Principle of linear variable differential Transformer (LVDT), | | | · | Lices of LVDT | | | - | Uses of LVDT Capacitive Transducer, General principle of capacitive | | | 5 th | Uses of LVDT Capacitive Transducer. General principle of capacitive transducer | | | | plate capacitive transducer | |------------------|-----------------|--| | | 2 nd | Piezo electric Transducer(their applications) | | | 3 rd | Hall Effect Transducer (their applications) | | | 4 th | Principle of operation of Cathode Ray Tube | | | 5 th | Principle of operation of Oscilloscope (with help of block diagram | | 13 th | 1 st | Measurement of DC Voltage & current by CRO | | | 2 nd | Measurement of AC Voltage, current by CRO. | | | 3 rd | Measurement of AC phase & frequency BY CRO. | | | 4 th | Overall Discussion | | | 5 th | Overall Discussion | | 14 th | 1 st | Overall Discussion | | | 2 nd | Previous year question Discussion | | | 3 rd | Tutorial | | | 4 th | Tutorial | | | 5 th | Tutorial | | 15 th | 1 st | Tutorial | | | 2 nd | Tutorial | | | 3 rd | Tutorial | | | 4 th | Tutorial | | | 5 th | Tutorial |