

ACADEMIC LESSION PLAN FOR SESSION-2021-22

DEPT. OF ELECTRICAL ENGG, GOVT. POLYTECHNIC, BALASORE. NAME OF THE FACULTY: ANITA SHIAL [Lect. (EE)] ENERGY CONVERSION-II

Course Code : TH-2

Theory : 4 P/W Class Test : 20 Marks
Total Period s: 60 P/ Sem End Semester Exam : 80 marks
Examination: 3 Hours TOTAL MARKS : 100 Marks
Sem : 5TH EE Start : 1ST October 2021

WEEK	PERIOD	TOPIC
1st	1 st	Explain and derive production of rotating magnetic field.
	2 nd	Explain constructional feature of Squirrel cage and Slip ring
		induction motors
	3 rd	Explain principles of operation of 3-phase Induction motor.
	4 th	Explain slip speed, slip and slip relation with rotor
		quantities.
2 nd	1 st	Derive Torque during starting and running and conditions
		for maximum torque.
	2 nd	Solved numerical problems
	3 rd	Derive Torque-slip characteristics.
	4 th	Derive relation between full load torque and starting torque
		etc. (solve numerical problems)
3 rd	1 st	Determine the relations between Rotor Copper loss, Rotor
		output and Gross Torque, and relationship of slip with rotor
		copper loss.
	2 nd	Explain and state Methods of starting and different types of
		starters.
	3 rd	Explain speed control by Voltage Control, Rotor resistance
		control, pole changing, frequency control methods.
	4 th	Describe plugging applicable to three phase induction
		motor.
4 th	1 st	Describe different types of motor enclosures.
	2 nd	Explain principle of Induction Generator and state its
		applications.
	3 rd	State types of alternator and their constructional features.
	4 th	Explain working principle of alternator and establish the
		relation between speed and frequency
5 th	1 st	Explain terminology in armature winding, and derive
		expressions for winding factors (Pitch factor, Distribution
		factor)
	2 nd	Explain harmonics, its causes and impact on winding
		factor.

	3 rd	Derive E.M.F equation.
-	4 th	Solve numerical problems
6 th	1 st	Explain Armature reaction and its effect on emf at different pf of load.
	2 nd	Draw the vector diagram of loaded alternator. (Solve numerical problems)
	3 rd	State and explain testing of alternator (open circuit and short circuit methods)
	4 th	Solve numerical problems
7 th	1 st	Determination of voltage regulation of Alternator by direct loading and synchronous impedance method.
	2 nd	Explain parallel operation of alternator using synchroscope, dark and bright lamp method.
	3 rd	Explain distribution of load by parallel connected alternators.
	4 th	Explain constructional feature of Synchronous Motor.
8 th	1 st	Explain principles of operation, concept of load angle.
	2 nd	Explain effect of varying load with constant excitation.
-	3 rd	Explain effect of varying excitation with constant load.
-	4 th	Derive torque, power developed
9 th	1 st	Explain power angle characteristics of cylindrical rotor
		motor.
	2 nd	Explain effect of excitation on Armature current and power factor.
_		Explain Hunting & function of Damper Bars.
	3 rd	Describe method of starting of Synchronous motor.
_	.l.	State application of synchronous motor.
46	4 th	Explain Rotating – field theory of 1-phase induction motor.
10 th	1 st	Explain Ferrari's principle.
	2 nd	Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors.
	3 rd	Split phase motor. Capacitor Start motor.
	4 th	Capacitor start, capacitor run motor Permanent capacitor type motor
11 th	1 st	Shaded pole motor.
	2 nd	Explain the method to change the direction of rotation of above motors
ļ	3 rd	Tutorial
	4 th	Explain construction, working principle of 1 phase series motor.
12 th	1 st	Running characteristic and application of single phase series motor.
	2 nd	Explain construction, working principle and application of Universal motors.
	3 rd	Explain working principle of Repulsion start Motor,,
	4 th	Repulsion start Induction run motor.

13 th	1 st	Repulsion Induction motor.
	2 nd	Principle of Stepper motor.
	3 rd	Classification of Stepper motor.
	4 th	Principle of variable reluctant stepper motor.
14 th	1 st	Principle of Permanent magnet stepper motor.
	2 nd	Principle of hybrid stepper motor.
		Applications of Stepper motor.
	3 rd	Explain Grouping of winding, Advantages.
	4 th	Explain parallel operation of the three phase
		transformers.
15 th	1 st	Explain tap changer (On/Off load tap changing)
	2 nd	State maintenance of Transformers.
	3 rd	Tutorial
	4 th	Tutorial