

ACADEMIC LESSION PLAN FOR WINTER 3RD SEMESTER 2022 .

Deptt. Of Civil Engg. , Govt. Polytechnic ,Balasore.
Name of the Faculty : FRANKAN KUMAR BASA
Structural Mechanics

Course Code: Th-1
Theory: 5 P/W
Total Period s: 75 P/ Sem
Examination: 3 Hours

Semester : 3rd

Class Test : 20 Marks
End Semester Exam : 80marks
TOTAL MARKS : 100 Marks
START- 15/09/2022

WEEK	PERIOD	TOPIC
1st	1 st	Basic Principle of Mechanics: Force, Moment, support conditions,
	2 nd	Conditions of equilibrium, C.G & MI, Free body diagram Review of CG
	3 rd	Conditions of equilibrium, C.G & MI, Free body diagram Review of CG
	4 th	MI of different sections
	5 th	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity,
2 nd	1 st	Durability, Types of stresses -Tensile, Compressive and Shear stresses,
	2 nd	Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral
	3 rd	strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc,
	4 th	Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.
	5 th	Application of simple stress and strain in engineering field: Behavior of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material,
3 rd	1 st	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress,
	2 nd	Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section,
	3 rd	Deformation of prismatic bars due to uniaxial load,
	4 th	Deformation of prismatic bars due to its self weight.
	5 th	Complex stress and strain
4 th	1 st	Principal stresses and strains: Occurrence of normal and tangential stresses,
	2 nd	Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations,
	3 rd	Mohr's Circle and its application
	4 th	Mohr's Circle and its application to solve problems of complex stresses
	5 th	Stresses in beams due to bending: Bending stress in beams
5 th	1 st	Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure Flexural stress distribution – Curvature of beam – Position of N.A.
	2 nd	Centroidal Axis – Flexural rigidity – Significance of Section modulus

-	3 rd	Shear stresses in beams: Shear stress distribution in beams of rectangular,
	4 th	Shear stresses in beams circular and standard sections symmetrical about
		vertical axis.
	5 th	Stresses in shafts due to torsion: Concept of torsion, basic assumptions of
		pure torsion, torsion of solid and hollow circular sections, polar moment
	1 st	of inertia, Torsional shearing stresses, angle of twist, torsional rigidity, equation of
6 th	1	torsion
	2 nd	Combined bending and direct stresses: Combination of stresses,
		Combined direct and bending stresses, Maximum and Minimum stresses
		in Sections,
	3 rd	Conditions for no tension, Limit of eccentricity, Middle third/fourth rule,
	4 th	Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls
	5 th	Columns and Struts, Definition, Short and Long columns,
_	1 st	End conditions, Equivalent length / Effective length, Slenderness ratio,
_	2 nd	Axially loaded short and long column, Euler's theory of long columns,
_+th	3 rd	Critical load for Columns with different end conditions
7 th	4 th	Types of loads and beams:
	5 th	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL),
	1 st	Types of Supports: Simple support, Roller support, Hinged support, Fixed support,
8 th	2 nd	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction
_	3 rd	Types of Beams based on support conditions:
-	4 th	Calculation of support reactions using equations of static equilibrium.
-	5 th	Shear force and bending moment in beams:
	1 st	Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F
	2 nd	B.M of general cases of determinate beams with concentrated loads and udl
		only, S.F and B.M diagrams for Cantilevers,
9 th	3 rd	Simply supported beams and Over hanging beams,
	4 th	And Position of maximum BM, Point of contra flexure,
	5 th	Relation between intensity of load S.F and B.M.
	1 st	Introduction: Shape and nature of elastic curve (deflection curve);
	2 nd	Relationship between slope, deflection
10 th	3 rd	Relationship between slope, deflection
	4 th	Curvature (No derivation),
	5 th	Importance of slope and deflection.
	1 st	Slope and deflection.
[2 nd	Slope and deflection of cantilever
11 th	3 rd	Slope and deflection of cantilever

	4 th	Simply supported beams under concentrated
	5 th	Uniformly distributed load (by Double Integration method, Macaulay's method).
	1 st	Indeterminacy in beams
12 th	2 nd	Principle of consistent deformation
	3 rd	Principle of consistent deformation, /compatibility,
	4 th	Analysis of propped cantilever
	5 th	Fixed and two span continuous beams by principle of superposition
	1 st	Fixed and two span continuous beams by principle of superposition
	2 nd	SF and BM diagrams (point load
13 th	3 rd	SF and BM diagrams (udl covering full span)
	4 th	SF and BM diagrams (point load and udl covering full span)
	5 th	SF and BM diagrams (point load and uvl covering full span)
14 th	1 st	Types of trusses,
	2 nd	Statically determinate
	3 rd	Indeterminate trusses,
	4 th	Indeterminate trusses,
	5 th	Degree of indeterminacy,
15 th	1 st	Degree of indeterminacy,
	2 nd	Stable and unstable trusses
	3 rd	Stable and unstable trusses
	4 th	Advantages of trusses.
	5 th	Disadvantages of trusses.