DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING GOVERNMENT POLYTECHNIC, BALASORE QUESTION BANK

ON

TH4- WAVE PROPAGATION & BROADBAND COMMUNICATION SEMESTER & BRANCH: -5^{TH} SEM, E & TC ENGINEERING

2 MARKS QUESTIONS

- 1. Define the term power density
- 2. Why does the atmosphere absorb some power from waves propagating through it?
- 3. What is refraction? Explain under what circumstances it occurs and what causes it.
- 4. What is interference of radio waves?
- 5. Calculate the critical frequency of an ionospheric layer having electron density of 4*1012electrons/m3.
- 6.Define the term critical frequency & maximum usable frequency.
- 7. Define skip distance.
- 8. What is fading? List its major causes.
- 9. Calculate the maximum line of sight distance covered by direct space wave if the height of transmitting and receiving antenna is given by 225 m and 16 m respectively above the ground level.
- 10. What is radio horizon? How does it differ from the optical horizon?
- 11. Define the term effective radiated power and radiation resistance.
- 12. Define the term antenna beam width
- 13. Define the term antenna polarization
- 14. Define the radiation resistance of an antenna. What is the significance of this quantity.
- 15. What is horn Antenna? How is it fed?
- 16.Define the term skin effect.
- 17. Differentiate between the concepts of group velocity and phase velocity as applied to wave guides.
- 18. Discuss the advantages of circular wave guide.
- 19. What are cavity resonators? What application do they have?
- 20. What are the three main limitation of ferrites.
- 21. Define isolator and mention its application.
- 22.Describe the transit time effect in microwave frequencies.
- 23. Mention the two application of klystron?
- 24.Discuss briefly the three methods of beam focusing in TWTs.
- 25. What are gunn domain? How are they formed.
- 26. What is transmission line? Give two examples?
- 27. When coaxial cable is preferred over parallel-line?
- 28. Define characteristic impedance of transmission line.
- 29. Write the expression for characteristic impedance and its simplified form for RF frequencies.
- 30. Define the term standing wave ratio.
- 31. Define LOS propagation.
- 32. What is a Dipole antenna?
- 33. Draw an equivalent circuit of a transmission line indicating R, L, C, G.
- 34. Define stub.
- 35. Define TE and TM mode?
- 36. What is Aspect Ratio?

- 37. How EM waves are propagated through wave guide?
- 38. State the function of driven element.
- 39. What is attenuation of radio wave?
- 40. Write down the advantages of parabolic antenna.
- 41. Define beam width and polarization.
- 42. Define Standing wave Ratio.
- 43. What is sky wave? Which frequency band is used for Sky wave propagation?
- 44. What is duct propagation? Explain in brief.
- 45. Draw the RF equivalent circuit of a Transmission line.
- 46. Define the term maximum usable frequency.
- 47. Define the terms "skip distance" and "skip zone".
- 48. What is actual height and virtual height?
- 49. What do you mean by smart antenna?
- 50. What do you mean by Aspect Ratio & Flicker?
- 51. Define SONET & ISDN?
- 52. Define hue, luminance & saturation?
- 53. State the relation between standing wave ratio and reflection coefficient?
- 54. What is Resolution? Name the types of Resolution.
- 55. What is a Stub? What do you mean by single stub matching?
- 56. Define absorption and attenuation of EM Wave.
- 57. Describe propagation of wave.
- 58. Define Bandwidth and Beam width of an Antenna.
- 59. Define SWR and VSWR.
- 60. Define Broadband Communication system.
- 61. What is Isolator? For what purpose it is used?
- 62. State two disadvantages of Rhombic antenna
- 63. Name two antennas which are Omni-directional in nature.
- 64. What is impedance matching?
- 65. Write down the advantages of Rhombic Antenna.
- 66. What is a transmission line? Where are the parallel wire lines and unbalanced lines used?
- 67. What is waveguide?
- 68. What are the different losses in transmission line?
- 69. What is directional coupler?
- 70. Write any two application of travelling waveguide.
- 71. Write the application of Tunnel diode.
- 72. Define the gain of an antenna.
- 73. What are the factors affects the directional pattern of an antenna?
- 74. What is waveguide and name the various types of waveguide.
- 75. Name two antennas which are used for microwave communication.
- 76. Write the application of Tunnel diode.
- 77. Mention the primary colours in a colour TV signal.
- 78. Define polarization and radiation resistance of an antenna.
- 79. Draw the V-I charecteristics and show the regions of operation of Gunn diode.
- 80. Draw a neat diagram of Directional Coupler and name its ports.

5 MARKS QUESTIONS

- 1. Discuss the types of losses that may occur with RF transmission line. In what units are these losses normally given
- 2. With a sketch explain the difference between standing wave and traveling waves. Explain how standing wave occur in an imperfectly matched transmission line.
- 3. Define and explain the meaning of the term standing wave ratio. What is the formula for it if the load is purely resistive? Why is a high value of SWR often undesirable.
- 4. A transmission line has a characteristic impedance of $500~\Omega$. It has been terminated in a $200~\Omega$ load. Calculate the following i) Reflection coefficient ii) VSWR on the line.
- 5. Briefly describe the following terms connected with sky wave propagation: Virtual height, critical frequency, maximum usable frequency, skip distance and fading.
- 6. What is ionosphere? Show how the electron density in the ionosphere varies with height. What frequency band used for ionospheric propagation.
- 7. Differentiate between sky wave and space wave propagation
- 8. Explain the construction & working of parabolic dish antenna with its advantages, disadvantages & applications
- 9. A certain antenna with an efficiency of 95% has maximum gain is 3. Calculate the maximum directivity of antenna in dB.
- 10. Derive the relation between standing wave ratio and reflection coefficient. Given that standing wave ratio is 3, calculate reflection coefficient of transmission line at load
- 11. A lossless air line has a characteristic impedance of 70Ω and a phase constant of 3 rad/met at 100MHz. Calculate the inductance per meter and capacitance per met of the line
- 12. Derive the expression for characteristic impedance & propagation constant for distortion less transmission line.
- 13. Draw the RF equivalent circuit of transmission line. What are the losses occurs in transmission line explain in details
- 14. Draw the block diagram of a monochrome television receiver and explain the functions of all the blocks.
- 15. Explain what is meant by the Y,I and Q signals in color TV and why are they generated.
- 16. Compare waveguides and transmission lines from the point of view of Frequency limitations, attenuation, spurious radiation and power handling capacity
- 17. A waveguide has an internal width of 3cm and carries the dominant mode of a signal of unknown frequency. If the characteristic wave impedance is 500 V, what is this frequency
- 18. With the aid of a diagram explain fully the operation of directional coupler; also state its uses.
- 19. Describe the two cavity klystron amplifier with the aid of a schematic diagram which shows the essential components of this tube as well as the voltages applied to the electrodes.
- 20. What is slow wave structure? Why does TWT need such a structure and also explain the operation of TWT.
- 21. With the aid of suitable diagram explain ISDN. Write down its application
- 22. Explain the operation of horizontal and vertical scanning process.
- 23. Describe the function of the chroma stages in a TV receiver.
- 24. Describe the double stub matcher, the procedure used for matching with it
- 25. The directivity of two hole directional coupler is given by 20 dB. Calculate the forward power measured by the detector if reverse power is 200mW.
- 26. What is meant by the diffraction of radio waves? Under what condition does it arise?
- 27. Discuss the principle of operation of two cavity klystron amplifier with a neat circuit diagram.

- 28. Explain the operation of dish antenna with parabolic reflector.
- 29. What is the function of a directional coupler?
- 30. Explain the different types of losses in transmission line.
- 31. Discuss the principle of isolator and circulator.
- 32. Explain the operation of cavity resonator.
- 33. State and explain antenna gain, directive gain, directivity and efficiency of antenna
- 34. Discuss the effects of environments relating to diffraction, absorption & attenuation of EM waves.
- 35. Discuss the primary constant of X-mission line.
- 36. Explain the space wave propagation.
- 37. Discuss briefly about the characteristic impedance.
- 38. Discuss isolator with neat diagram.
- 39. Explain the transmission and reception process of a Horn Antenna.
- 40. State Short note on SONET & ISDN
- 41. Explain critical Frequency, Maximum Useable frequency, Skip distance and Fading.
- 42. What makes ISDN signaling flexible? Why is it that a packet switched network is more suitable than a circuit switched network for ISDN signaling?
- 43. Explain the phenomenon of selective fading in connection with tropospheric waves.
- 44. Discuss the principle of operation of LCD display.
- 45. What is ionosphere? Show how the electron density in the ionosphere varies with height.
- 46. What do you mean by Interlaced Scanning? How is it accomplished?
- 47. Discuss in brief the Yagi Uda antenna with neat diagram.
- 48. Discuss the working of a Travelling wave tube (TWT)?
- 49. Explain the Interlaced scanning?
- 50. Explain the operation of rectangular waveguide.
- 51. Explain the operation of omni directional antenna
- 52.Explain briefly about various broadband network architectures.
- 53. Explain the operations of dipole antenna
- 54. Explain about working of smart antenna and its advantages
- 55. Comparison the different Types of Televisions by Technology
- 56. Explain about CATV systems & Types & networks.
- 57. Explain about Digital TV Technology
- 58. Explain about Ground wave and Sky wave propagation

10 MARKS QUESTIONS

- 1. Describe Ground wave propagation. What is the angle of tilt? How does it affect field strength at a distance from the transmitter
- 2. Briefly describe the following terms connected with sky-wave propagation: virtual height, critical frequency, maximum usable frequency, skip distance and fading.
- 3. With the aid of appropriate sketches explain fully the operation and construction of yagi-uda array. List its application. Why is it called a super gain antenna.
- 4. With the aid of suitable diagram describe the construction, feeding method of parabolic reflector antenna. What are its advantages and disadvantages.
- 5. Explain how bunching takes place in the klystron amplifier. Make a clear distinction between velocity modulation and current modulation.
- 6. Explain the operation of the reflex klystron oscillator. Why is the transit time so important in this device. List and discuss the application and limitation of reflex klystron oscillator.
- 7. Explain fully the gunn effect, where by negative resistance and therefore oscillation. Why are gunn devices are called diode.
- 8. A quarter wave transformer is connected directly to a 50Ω load to match this load to a transmission line whose $Z0=75~\Omega$. What must be the characteristic impedance of the matching transformer.
 - ii)Explain fully the concept of impedance inversion by a quarter wave line.
- 9. Draw the block diagram of a color TV receiver, and explain each block.
- 10. Draw the block diagram of monochrome TV transmitter and explain function and operation of all the blocks.
- 11. Explain the effects of environment on propagation of waves, particularly reflections, refraction, interference and diffraction.
- 12. Explain the operation of rectangular waveguide and write its advantages and disadvantages.
- 13. Derive the equation for primary and secondary constant of transmission line.
- 14. Explain the operation of parabolic reflector with advantages & disadvantages
- 15. Discuss the principle of directional coupler and circulator.
- 16. Explain the radiation mechanism of an antenna.
- 17. Write short notes on any TWO
- (i) Interlaced Scanning
- (ii) Isolator
- (iii) Impedance matching in transmission line
- 18. Describe the operation of Yagi-uda antenna and write its advantages and disadvantages.
- 19. With a neat sketch discuss the operation of horn antenna.
- 20. Explain SONET with its advantages and application.
- 21. Write the short notes on any two of the following with necessary diagrams
- (i) Rectangular Waveguide
- (ii) SONET
- (iii) LCD
- (iv) ISDN
- 22. State and explain antenna gain, directive gain, directivity and efficiency of antenna.
- 23. Discuss the detail the principle of operation of Cyclotron

- 24. Explain in brief the following terms with reference to colour television transmission and reception:
- (i) Luminance and Luminance signal
- (ii) Chrominance and chrominance signal
- (iii) Primary colour and secondary colour
- 25. Explain briefly the operation of directional coupler. Discuss the detail about the construction operation advantages and disadvantages of parabolic antenna
- 26. Write a detailed explanation on rectangular scanning and interlaced scanning.
- 27. Describe the propagation of wave through rectangular and circular waveguide in TE & TM modes.
- 28. State impedance matching in transmission line. Explain briefly double stub match lines.
- 29. Explain about operations of Tunnel diode and PIN diode.
- 30. Explain the working of different types of antenna.
- 31. Explain the operation of rectangular waveguide with its advantages.
- 32. Describe the construction, working operation and application of Gunn diode. What is Gunn Effect?
- 33. Discuss the different types of losses in RF transmission lines. To what extent it is justifiable to assume RF transmission lines to be loss-less.
- 34. Explain the operations of Mono pole and dipole antenna
- 35. Explain about Ground wave, Ionosphere ,Sky wave propagation, Space wave propagation