DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING GOVERNMENT POLYTECHNIC, BALASORE QUESTION BANK

ON TH3- DIGITAL ELECTRONICS

SEMESTER & BRANCH: - 3RD SEM, E & TC ENGINEERING

SHORT QUESTIONS

- 1. Which codes are known as self correcting codes and why?
- 2. Why de-multiplexers are referred to as data distributors?
- 3. Define racing condition.
- 4. State De- Morgan's theorem.
- 5. Write down the truth table of a 2 input Exclusive-OR gate?
- 6. Solve (1010)2-(1010)2 using 1's complement.
- 7. Subtract (28)10 from (39)10 by using 2's complement methods.
- 8. Convert (0011011) from gray to binary.
- 9. Define don't care condition.
- 10. Explain the term fan-in and fan-out.
- 11. Perform excess-3 subtraction of (267-175).
- 12. What is the difference between weighted and non-weighted codes?
- 13. What is the meaning of Min. term and Max. term.
- 14. Convert binary number (110101.011)2 to decimal number.
- 15. Perform Excess-3 Subtraction of 97 72.
- 16. Define modulus of a counter.
- 17. What is an encoder and where it is used?
- 18. State associative and distributive law.
- 19. Write the truth table of a NAND gat with symbol.
- 20. Define racing condition. How it can be avoided.
- 21. Define the term fan in, fan out and propagation delay
- 22. Find 2's complement substraction of 10110-11010.
- 23. Distinguish between combinational and sequential logic circuit.
- 24. Write the truth table of a Exclusive NOR gate
- 25. Find the 1's complement and 2's complement of the binary 10110100.
- 26. Convert the decimal number (95)10 into its equivalent BCD and Excess-3 Code
- 27. What is max term and min term?
- 28. Draw the block diagram of Full adder using two half adder and one OR gates
- 29. What is modulus of a counter?

- 30. Why multiplexers are referred to as data selector?
- 31. Why Demultiplexers are referred to as data distributors?
- 32. Convert the decimal no. (1000)10 into Binary.
- 33. Convert (10110101) from binary to gray code.
- 34. Define the term Fan out and Resolution.
- 35. What is the difference between weighted and non-weighted binary code.
- 36. What is parity bit?
- 37. What is an encoder and where it is used?
- 38. What is the base or radix of a number system?
- 39. What is the difference between RAM and ROM?
- 40. What do you mean by radix of a number system?

LONG QUESTIONS

- 1. Design a 4:2 encoder with a neat circuit diagram.
- 2. Design a 4:1MUX with a neat circuit diagram.
- 3. Design a 3:8 decoder .Give its logic expression and truth table. Implement the logic circuit with basic gates.
- 4. Design a 2 bit comparator circuit whose outputs are P>Q, P<Q and P=Q where P and Q are each 2 bit nos.
- 5. Draw the logic circuit of full adder. Give its logic expression, truth table and implement the logic circuit with any one of the universal gates.
- 6. Show the logic diagram of a clocked JK flip flop. Explain its working with a functional table.
- 7. Draw the logic circuit of full adder. Give its logic expression, truth table and implement the logic circuit with any one of the universal gates.
- 8. Explain the operation of 7 segment display and LED.
- 9. Design a 4 bit combinational logic circuit to produce 1's complement of the 4 bit binary number.
- 10. Differentiate between combinational and sequential logic circuit.
- 11. With a neat diagram explain the operation of SISO and PIPO register.
- 12. Show the logic diagram of a clocked SR flip flop. Explain its working with a functional table.

- 13. Which gates are referred to as universal gates and why? How other gates can be realized using NOR gates?
- 14. Define stack, stack top and stack pointer and why it is essential.
- 15. Design a MOD-10 counter with a neat logic circuit diagram.
- 16. Simplify and minimize the four variable logic expression using k-map $F(A,B,C,D)=\Sigma M(2,3,4,5)+d(10,11,12,13,14,15)$
- 17. Design a 2 bit comparator circuit whose outputs are P>Q, P<Q and P=Q where P and Q are each 2 bit nos.
- 18. Explain with a sketch the successive approximation A/D converter.
- 19. Write short notes on any two of the following:
- (a) Explain the working of SIPO shift register. (b) One-bit comparator circuit. (c) Racing condition and how it can be avoided.
- 20. Explain the working of JK flip-flop and draw its truth table. How JK flip-flop can be constructed into (i) T-flip-flop, (ii) D-flip-flop.
- 21. Explain the operation of seven segment display.
- 22. Define a half adder. How a full adder can be constructed using half adder? Draw the logic circuit and truth table of full adder.
- 23. Simplify the minimal minterm expression of
- $f(W, X, Y, Z) = \sum m(0, 1, 2, 5, 6, 8) + d(3, 4, 7, 14)$ using Karnaugh map & draw logic circuit using NAND gate only.
- 24. Distinguish between combinational logic and sequential logic.
- 25. Simplify Boolean expression $X = P\overline{\overline{Q}} + \overline{P}\overline{\overline{R}} + P\overline{\overline{Q}}.R$ & draw logic circuit using NOR gate only.
- 26. Explain the working of a clocked RS flip-flop using NAND logic circuit.
- 27. Which gates are called universal gates and how other gates can be realized?
- 28. Explain the terms RAM, ROM, PROM, EPROM and EEPROM.
- 29. Explain the working of a 4 bit binary asynchronous counter with circuit and timing diagrams.
- 30. Explain the working of a clocked RS flip flop using NAND gates. Why the set and reset inputs are known as asynchronous input signals?
- 31. With neat circuit diagram explain the function of 1:4 De-Mux and 4:1 Mux
- 32. Draw the circuit diagram of clocked SR Flip-Flop. Explain it with a functional table.
- 33. Explain the operation of Full Subtractor.
- 34. Design and explain the working of a 4 bit Ripple counter with neat logic diagram, truth table and timing diagram
- 35. With neat sketch explain the working of Decimal to BCD Encoder